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ABSTRACT 

The isomorphism classes of simple representations of a finitely generated 
group form an algebraic variety. It is shown that the tangents to formal curves 
through a point in the variety are given by the linear parts of Lie algebra 
homomorphisms from the Lie algebra of the pro-unipotent radical of the 
universal pro-alfine hull of the group to the Lie algebra of matrices over formal 
power series. This description allows a determination of singular represen- 
tations for nilpotent groups and of the tangent cones to representation 
varieties for abelian-by-finite groups. 

The isomorphism classes of simple n-dimensional representations of the 
finitely generated group F form an algebraic variety: its points are conjugacy 
classes of tuples of n X n matrices (the images of the generators) which satisfy 
the relations of the group (so give a representation) and which linearly span all 
matrices (so give a simple representation). We denote this variety S,(F). It is a 
comparatively straightforward observation that the tangent space to an iso- 
morphism class [p] is contained in the cohomology space HI(F, Ad op), where 
Ad is the adjoint representation, so for 3' in F and A an n X n matrix 
(Ad op)(3')(A) =p(3')Ap(3')-|; see [8], [4, 2.2, p. 33], or Section 2 below. It is a 
much more delicate matter to locate the tangent space at [p] inside of H 1. (It 
can be a proper subspace, as shown in [4, 2.10, p. 42] and Example 4.6 below.) 
The (reduced) tangent cone at [p] is equally mysterious. However, as the main 
results of this paper show, it is possible to give a good description of a subset of 
the tangent cone and space which we term the space of curve tangents, namely 
the linear tangents to formal curves in Sn(F) through [p]. Since at non-singular 
points the tangent space and the space of curve tangents coincide, this provides 
a generic description of tangent spaces, as well as a necessary condition for 
non-singularity (linearity of the space of curve tangents). And in the case of 
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abelian-by-finite groups, where it is shown (4.1) that the spaces of curve 
tangents and tangent cones always coincide, we have a description of the latter 
and have a determination of the dimension of the representative variety. 

To understand the description of the space of curve tangents, we need first to 
recall the universal pro-attine hull of F. This proalgebraic group, denoted A (F), 
receives a homomorphism from F with Zariski-dense image through which 
every representation of F factors. The prounipotent radical U(F) of A(F) is 
normalized by F and hence its Lie algebra is a F-module. For our represen- 
tation p of degree n, the curve tangents to Sn(F) at [p] correspond to those 
F-equivariant linear maps from Lie(U(F)) made abelian to the space of n × n 
matrices which can be extended to F-equivariant Lie algebra homomorphisms 
from Lie(U(F)) to the Lie algebra of n × n matrices over formal power series 
without constant term. 

The above description, while not in general effective, has the following nice 
form when Lie(U(F)) is finite-dimensional and graded by its lower central 
series: then the extentable linear maps are just the Lie homomorphisms. This 
allows the result to be applied to nilpotent and abelian-by-finite groups. 

The paper is organized as follows: Part 1, Preliminaries, reviews definitions 
and establishes notations for representation varieties and their tangent objects. 
Part 2, Tangent spaces, proves the main results describing spaces of curve 
tangents in terms of linear maps extendable to Lie homomorphisms. Part 3, 
Nilpotent groups, determines that the non-singular semi-simple represen- 
tations in the nilpotent case are just those without repeated composition 
factors. Part 4, Abelian-by-finite groups, applies the theory to this case, taking 
into account the structure of representation varieties implied by the Clifford 
theory. 

This work was supported by the National Science Foundation and the 
United States-Israel Binational Science Foundation, the latter by a joint grant 
with Alexander Lubotzky. His help and contributions are gratefully acknow- 
ledged. 

I. Preliminaries 

We use the following notations and conventions from [4] throughout: 

k denotes an algebraically closed field of characteristic zero (usually C). 
F = (gl, • • •, gd I rq, q E Q) denotes a finitely generated group with genera- 

tors gp and relations rq. 
G denotes an afline algebraic group scheme over k. 

The functor from commutative k-algebras to sets which sends the algebra A 
to Horn(F, G(A)) is represented by an afline scheme ~?(F, G) of finite type over 
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k and whose k-points comprise an attine algebraic set denoted R(F, G). When 
G = GLn we use the notation ~t.(F) and Rn(F). The coordinate rings of  ~tn(F) 
and Rn(F) are denoted ~/n(l') and An(l'). (These are equal only if ~tn(l") is 
reduced.) 

The group scheme G acts on ~t(F, G) by conjugation, and when G is 
reductive a universal categorical quotient exists. This action and its quotient 
are most important  for the case G = GLn, where the categorical quotient is 
denoted ~ ( F ) .  Inside ~tn(F) is the GLEstable open subscheme ~tn(F) s of  
simple representations (p in Horn(F, GLn(A)) is simple if p(F) spans Mn(A) 
over A). GLn acts with closed orbits on ~tn(F) s and its image ~( l " )  in ~og°,(F) 
is a geometric quotient of  ~tn(F) s, locally trivial for the ~tale topology. The k 
points of these schemes are denoted SSn(F) and Sn(I'). 

We need to briefly review the hierarchy of tangential structures to schemes at 
k-points. We also use this notation throughout. 

For the purposes of this review, we let ~¢ denote an affine k-scheme of finite 
type with coordinate ring ~ / a n d  variety R = ~ ( k )  o f k  points. A = ~red is the 
coordinate ring of R. We fix a k-point  r in R and let m C_ A be the correspond- 
ing maximal ideal. In the following definitions k[e] denotes the dual numbers 
over k: 

The tangent space T~(~) is the fibre of  ~ ( k [ e ] ) - ,  ~ ( k )  = R over r. 
The tangent space Tr(R) is the fibre ofAlgk(A, k[e]) --- Algk(A, k) -- R over r. 
The tangent cone TCr(R) is Algk(grm(A), k). 

We also need to consider formal curves in ~ at r and their tangents. 

DEFINITION 1.1. The set Cr(~)  of  formal curves in ~ at r is the fibre of  
~(k[[t]])  ~ ~ ( k )  = R over r. The image of Cr(.~) in T~(R) under  the natural 
map k[[t]] -~ k[e] is denoted CT~(R) and called the set of  curve tangents to 
R a t r .  

For general schemes one needs also to consider higher-order curve tangents. 
For this, we define km[[t]] to the subring ofk[[t]]  ofaU series £ a~t i with at = 0 
for I < i < m.  Let C~(~)"  be the set of  formal curvesfwi thf (~t )  in k~[[t]] and 
let CT~(R) m denote the image of  C~(~) m in T~(R) under the map km[[t]]-~ 
k[e] defined by the inclusion into k[[t]] followed by reduction modulo t m + 1. 
Note that k~[[t]] = k[[t]] and CT~(R) I = CT~(R). 

These sets are related as follows: 

(1.2a) CT~(R) c_ CT,(R) m c_ TC,(R) c_ T,(R) c_ Tr(~),  

(1.2b) TC,(R) = U(CT~(R) m I m > 1}. 

The inclusions of(1.2a) arise as follows: if the curve tangent z comes from the 
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curve f :  ~¢---k[[t]] it also comes from f c o m p o s e d  with k[[t]]-'k[[tm]] by 
t -" t m, where the latter is regarded as a subring of km [[t]], and hence the first 
inclusion. If  the curve tangent z comes from the curve f :  M--km[[t]] ,  then f 
factors through A and f (a )  = to(a) + r~(a)t m + higher degree, where r0 = r and 
ro + tie = z. Let Mi denote the ideal m " - l + i  N km[[t]]. Then f(rn i) _C M~ a n d f  
induces a map of  associated gradeds gr(A)---, gr(km lit]I) = k[t]. Following this 
by evaluation at 1 gives a homomorphism h : gr(A)-- k in the tangent cone. 
This is the second inclusion. For any homomorph ism g = ~g~ in TCr(R), the 
corresponding tangent vector is a defined by 

tr(a) = r(a) + gl((a - r(a)) + mE)e. 

This is the third inclusion of  (1.2a), and the fourth is clear. Equality (l.2b) is 
standard. 

The inclusions of  (1.2a) can all be proper. By definition r is non-singular on 
R when TCr(R)= T~(R). When this happens, CTr(R)= Tr(R) also [6, Thm. 
6 l, p. 206], so we can also take the latter equality as the definition. If  also ~ is 
reduced at r then CT~(R)= Tr(~l) and in this case we say R is scheme 
non-singular at r. 

We will want to specialize these definitions to the case ~ = ~ ( F )  and 
r = p  ~R~(F). Thus we need to consider 

~ ( F ) ( k [ e l )  = nom(F ,  GL~(k[e])) 
and 

Rn(F)(k[[t]]) = Hom(F, GL~(k[[t]])). 

Both of these are sets of  homomorph ism from F to (pro)-algebraic groups. We 
recall that such homomorphisms  are specializations of a universal one [4, 4.2, 
p. 65]: There is a pro-affine algebraic group A(F) and a group homomorphism 
j :  F---A (l-) with Zariski-dense image such that any homomorph ism h : F--- G 
from F to a pro-algebraic group G factors as h = / / j  where h : A (I') -~ G is a 
pro-algebraic group homomorphism.  The pro-algebraic group A (F) is a semi- 
direct product of its prounipotent  radical U(F) and any maximal proreductive 
subgroup [2]. These latter are all conjugate by elements of U(F) and we fix one 
and denote it P(F). U(F) is acted on by F via j .  

2. Tangent spaces 

Throughout this section we fix a finitely generated group F and a semi-simple 
representation p : F--- GLn(k). In [4, 2.2, p. 33] it was shown that Tp(~In(F)) 
can be identified with ZI(F, Ad op). (This does not require p to be semi- 
simple.) The identification was based on writing GLn(A)(k[e]) as the semi- 
direct product  Mn (k) >~ GL~ (,4)(k) using the adjoint action of  GL~ (A) on M~. 
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We will need an alternate description, based on writing GL.(A)(k[e]) as a 
semi-direct product of its subgroups I + eM.(k) and GL.(A)(k), which makes 
the role of U(F) more explicit. This allows us to describe the set CTp(R.(F)) in 
terms of U(F). We begin with a calculation of coboundaries: 

LEMMA 2.1. Let p~: F--*GL.(k[e]) in Tp(~I.(F)) = Tp correspond to a in 
Z~(F, Ad op) = Z ~ and let A = I + el) where D ~M~(k) = C°(F, Ad op). Then 
Ap~A- l in Tp corresponds to a + 6(D) in Z 1. 

PROOV. We identify B + C e  in GL,(k[e]) with (CB-~,B) in 
M,(k) ~1GL,(k) to relate Tp and Z ~ [4, 2.1, p. 32]. If p , (a )=  Ba + eCa, then 
a ( a ) =  CABS-'. Since A -l = I -  eD, Ap~A-~(a)= Ba + e(Ca + DBa -BAD) 
which corresponds to the cocycle sending a to Ca + Ba -BaDB~-~; i.e., to 
a + 0(D). 

The semi-simple representation p extends to a homomorphism p : A (F) 
GL,(k). I f 0 :  U(I")--*I + eM,(k) is a homomorphism, we can define a func- 
tion OP :A(F) = U(F)P(F) ~ GL,(k[t]) by (OP)(up) = ~u)p(p) .  For 0P to be a 
homomorphism, it is necessary and sufficient that 

~ p u p - ' ) = p ( p ) ~ u ) p ( p ) - '  foral luEU(F) andp~P(F).  

This conjugation formula is implied by the more general formula 

O(aua-') = p(a)~u)p(a)- '  for u E U(I-') and a CA(F), 

and is equivalent to it when p(U(F)) commutes with I + eM. (k). Since p(U(F)) 
is always in GL, (k), we get commutativity ifp(U(F)) -- I, which happens when 
p is semi-simple. Thus in the semi-simple ease OP is a homomorphism if and 
only if ~ commutes with the F, hence A(F), action on U(F) and I + e,M.(k). 
Thus we have map 

• : Homr(U(F), I + em, (k ) )~  Hom(A (I"), GL,(k[e])) = Horn(F, GL,(k[el)). 

Since composing cI~(0) = OP with the map GL,(k[e])-~ GL,(k) by e ~ 0 gives 
p, the image o f ~  lies in Tp(~,(F))..In fact, the image is most of the tangent 
space. 

TheOReM 2.2. Let p : F ~  GL,(k) be a semi-simple representation, then 

Tp(~,(F)) = Homr(U(D, I + eM.(k))~B'(F,  Ad op). 

PROOF. The map ~ is injective since ~p [ U(1-')= q~. Suppose D ~M.(k)  
and let O(D)~B~(F, Adop) be the corresponding co-boundary. Assume 
t~(D) = ~p for some 0, say 
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~ ( u ) = I + e C ~  f o r u E U ( r )  and p ( p ) = B p  f o r p E P ( r ) .  

Then Op(up) = E,,p + eFup where Eup = Bp and Fup = C~Bp. The cocycle corre- 
sponding to #p is then up ~ F~pEG 1 = Cu. Now 

J(O)(up) = O - p(up)Dp(up) -1 = O - BpOBp -1 . 

Thus Cu = D - BpDB 71 for all u, p. Takingp = e we see that C~ = 0 for all u, 
so ~ is trivial. This shows that the sum is direct. To see that it is all of Tp, let 
p, : F ~  GL,(k[e]) be a homomorphism over p. Then A(P(F)) is reductive, so 
there is an A in I + eM~(k) with A-~p,A = f  sending P(F) to GL,(k): for 
I + eM,(k )  is the unipotent radical and GL, (k) a maximal reductive subgroup 
of GL~(k[e]). Under evaluation of e at 0, f a n d  A have the same image p, so 
f(U(F)) c_ I + eM~(k). Let ¢ =fl  u(1-). T h e n f =  ~p: for f (up)  = f ( u )  f ( p )  = 
¢)(u)f(p),  and since f ( p ) ~ G L , ( k )  we can determine its value by setting 
e to 0, so f ( p ) = p ( p ) .  Since f is a homomorphism, we have ~ in 
Homr(U(F), I + eM~(k)). IfA = I + eL), then by (2.1) we have p~ = ¢ + 3(D), 
completing the proof of (2.2). 

In fact, (2.2) was essentially obtained by other means in [4, 4.7, p. 73]. We 
have provided the new proof to facilitate the following result, which describes 
the space of curve tangents. 

THEOREM 2.3. Let  p : F--- GL~(k) be a semi-simple representation, let 

V = {~EHomr(U(F), I + eM (k)) [ 3 ~t EHomr(U(F),  I + tM~(k[[t]])) 

Then 

I f  p is simple, then 

with ¢)t ~ 0 (mod t2)}. 

CTp(R.(F)) = V X B~(F, Ad op). 

CTtpj(S (F)) = v 

PROOF. The group GL,(k[[t]]) is pro-algebraic and the semi-direct product 
of its pro-unipotent radical I + tM,(k[[t]]) and a maximal reductive subgroup 
GL.(k). As above, a homomorphism gt in Homr(U(F), I + tM.(k[[t]])) yields 
a homomorphism g ,p :A(F) - - ,  GL,(k[[t]]), which is a formal curve at p. The 
corresponding curve tangent ¥ is then obtained by reading Vt modulo t 2. If ~utP 
is composed with inner automorphism by 

A = I + tD + t2D2 + • • • + t~Ds + • • • 

the resulting curve tangent is conjugated by I + el) and hence, by (2.1), is 
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+ 6(D). Thus V X B ~ consists of curve tangents. If a curve tangent at p 
comes from the curve Pt, then ~(P(l-')) is reductive so we can conjugate by an A 
in I + tM,(k[[t]]) to get A -~fftA = g sending P(F) to GL,(k).  As in (2.2), this 
implies that g = ~tP for suitable qtt in Homr(U(F),  I + tM~(k[[t]])). Thus the 
curve tangent given by Pt is ~t modulo t 2 plus a coboundary coming from A, as 
in (2.2). This shows that CTp = V X B ~. 

For the assertion about the simple case, we use that p :  R,(F) s ---S.(F) is 
locally trivial for the 6tale topology. Let G denote PGL,(k),  let X be an affine 
G-stable neighborhood of p and let Y denote the quotient X/G.  There is a 
subvariety W of X through p such that G × W--- X is 6tale with open image 
and W ~ Y is 6tale (W is an 6tale slice in the sense of  Luna). Since ~tale 
morphisms admit  unique liftings through square zero extensions, it is easy to 
see that 

C~e,~)(O X W) = C ( G )  X C~(W) = C~(X) 

so that CTp(X) = Te(G) X CTp(W) and that CTp(W) = CTptp)(Y). Since the 
image of Te(G) in Tp(X) is B~(F, Adop)  [4, 2.3, p. 34], this implies that 
C T t p j ( S . ( r ) )  = V.  

As we shall see, (2.3) is most  useful in tests for singularity, since what it does 
is provide a concrete description of the set of curve tangents inside the space of  
scheme tangents. We will thus, for example, be able to test for non-linearity of 
the set of curve tangents (which will imply non-singularity). Since the tangent 
space is only embedded in the (cocycle and cohomology) spaces of scheme 
tangents, (2.3) can't be used to assess singularity in general. However, we can 
use it to assess "scheme non-singularity", a remark which we note for future 
reference as a corollary to (2.3). 

COROLLARY 2.4. Let p : 1"---GL,(k) be a semi-simple representation, and 
let V be as in (2.3). Then if  V = Homr(U(F),  I + eM,(k)), p is non-singular on 
~¢,(F) and 

Tp(R,,(F)) = Tp(~,,(F)) = Z ' ( r ,  Ad op). 

I f  in addition p is simple, then p is non-singular on S,,(F) and Tp(S,,(F))= 
H~(F, Ad op). 

PROOF. The hypothesis, by (2.3), is equivalent to the statement that 
CTp(R,(F)) = Tp(~C,(F)) from which the conclusions all follow. 

The essential point of  (2.3) is that up to conjugation (whose tangential action 
is by addition of  coboundaries) formal curves in R.(F) at p correspond to 
F-equivarient homomorphisms  from U(F) to I + tM,(k[[t]]). Both of  these 
are pro-unipotent groups, and homomorphisms  between them are determined 
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by the corresponding maps on Lie algebras [3, I. 1, p. 78], these being here 
Lie(U(l") and tM,(k[[t]]). 

Thus to use (2.3) effectively, we need to understand the function 

(2.5) Homr(U(r ) ,  I + tM,(k[[t]]))---, HOmr(U(F), I + eM.(k)) 

and its Lie algebra form 

(2.6) Lier(L, tM,(k[[t ]])) ~ Lier(L, eM,(k )), 

where L -- Lie(U(F)). 
In fact, (2.6) makes sense for any (pro) nilpotent Lie algebra L,  and we will 

look at it in that generality. It is especially important  in (2.6) to note that 
eM,(k) is an abelian Lie algebra, and it is not M,(k)  under  bracket con- 
jugation. 

To study (2.6), we will temporarily drop the F-action. A Lie homomorph ism 
0 : L ~ tM,(k[[t]]) induces homomorphisms  on the terms of the lower central 
series and hence a homomorph ism of  associated graded Lie algebras. (We 
recall that ~ L  = L and ff~ + tL = [L, W~L ], that gr~(L) = ~ L / ~  + ~L and that 
gr(L) = ~ gr;(L).) Let M denote tM, (k [[t ]]). Then a simple induction shows 
that ¢ ~ i L )  c_ PM, the latter being an ideal of M. Since [tiM, tiM] c_ t~+JM, 
~(t~M/t~+'M) is a graded Lie algebra canonically isomorphic to tM,(k[t]). 
From ~ there is an induced homomorph ism gr(0) : gr(L)-~ M. This construc- 
tion has implications for (2.6), as we show in (2.7). For simplicity, we will 
restrict to finite-dimensional L.  In general the argument is similar, except for 
non-finitely generated L the closed lower central series must  be used. 

LEMMA 2.7. Let L be a finite-dimensional nilpotent Lie algebra with 
minimal generating set xx, . . . , Xd. Let O: L -~ tM,(k[[t]]) be a Lie homomor- 
phism, and suppose O(x~) = tA~ + higher degree. Then the Lie subalgebra of  
(~4(k) generated by A~, . . . , Ad is a homomorphic image of  gr(L ). 

PROOF. We replace O, L, tM,(k[[t]]) by gr(0), gr(L), tM.(k[t]). So we 
assume L = L ~ )  . . .  ~ L  s is graded and L ~ has a basis x~,x~ . . . . .  Let 

O(xip) = tiAi(p). Since [x~, x~] = Z4,pj,q,,X~ +i, we have, comparing lowest de- 

gree terms, that t~+J[Ai(p), Aj(q)] = Y,,4,pj,~,,t~+JA~+j(r). Cancel t ~+j from both 
sides. The resulting equality implies that x~--,A~(p) extends linearly to a 
representation of  L in (~4(k). Since L is generated by L ~, this means that 
A ~(1), A 1(2) . . . .  generate a homomorphic  image of L. In terms of our original 
(ungraded) L,  the minimal  generators x~ go to a basis o f L  ~. So we can assume 
that x] = xi + ~ : L ,  and the result follows. 
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The graded case, used to prove (2.7), is worthwhile noting separately. In fact, 
in this case we also have a converse: 

PROPOSITION 2.8. Let L be a finite-dimensional graded nilpotent Lie al- 
gebra with minimal generating set x l , . . . ,  Xd. I f  O : L--'tM.(k[[t]]) is a Lie 
homomorphism with ~x~) = tA~ + higher degree, then the Lie subalgebra of  
f~/. (k ) generated by A~ . . . . .  Ad is a homomorphic image of  L. Con versely, i f  L 
is represented in ~4 (k )  with x~ represented by Bi then there is a Lie homomor- 
phism ~v : L --. tM,(k[[t]]) with ~(x~) = tB~. 

PROOF. We need only show the converse, and we adopt the notation of the 
proof of (2.7). Then x~ is represented in f~4(k) by B~(p), where B~(i)= B~. 
Then it is clear that ~: L ---, tM,(k[[t]]) defined by ~u(x~) = t~B~(p) and linear- 
ity is a Lie homomorphism. 

Proposition 2.8 basically describes the image of (2.6), ignoring the F-action, 
in the graded case. We do not know if(2.8) holds for all nilpotent Lie algebras. 
As we see below, (2.8) suffices in two special cases: (i) F nilpotent and (ii) U(F) 
abelian. The technique used to prove (2.7) and (2.8) also has important 
implications for the tangent cones in those cases. 

THEOREM 2.9. Assume L = Lie(U(F)) is graded by its lower central series. 
Let p: F ~ G L . ( k )  be semi-simple. Then CTp(R.(F)) = TCp(R.(F)). I f  p is 
simple, then CTtpj(S.(F))= TCtvj(S.(F)). 

PROOF. By (1.26), it will suffice to show that CTp(R,(F)) m = CTp(R,(F)) 
for all m. Now the essential point of the proof of(2.3) is that, up to conjugation 
by elements of I + tM,(k[[t]]), formal curves in R,(F) at p correspond to Lie 
homomorphisms. Those higher-order curves of order m correspond to Lie 
homomorphisms ¢ : L ---, t"M,(k[[t]]). We use the notation L = L ~ ~ ) . . .  
L s, where L ~ has basis x{, x~ . . . .  as in the proof of (2.6). Suppose that 
[xip, X~] = ]~ ~i,j,p,rX~ +j and that q~(x~ ) = tmiAi(p) + higher degree. Exactly as in 
(2.7), it follows that X~ ---A~(p) extends linearly to a representation ofL.  Thi4s 

) 

representation is, on the one hand, the order-m curve tangent to ¢ at p, and On 
the other, by (2.8), is an order-one curve tangent at p also. This proves that 
CT~' = CTp and hence the theorem. 

It's possible that (2.9) holds in more, even complete, generality. We will 
apply it only in the case that L is abelian, hence (trivially) graded. 
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3. Nilpotent groups 

Throughout this section F will denote a finitely generated nilpotent group. 
In this case U(F) is a (finite-dimensional) unipotent group - -  the Malcev 
completion of  any torsion free normal finite index subgroup o f F - -  and A (F) is 
the product U(1-') × P(F) [5, 4.10, p. 93]. Thus F, acting on U(F) by conjuga- 
tion, is trivial on the commutator  quotient U(F) ab. Since eM~(k) is abelian, 
this means that for any semi-simple p ER~(F) we have 

Homr(Lie(U(1-')), eM~ (k)) = HOmk(Lie(U(F)), eMn (k)r). 

Now Mn(k) r is Endr(p) and, since p is semi-simple, this latter is a product  of 
full matrix rings, whose sizes are equal to the multiplicities of the simple 
components ofp.  This identification of the subspace eM~(k) r ofeM,(k) in fact 
identifies it as a sub-Lie algebra of fq4 (k). From this we obtain our main result 
on singularities: 

TrI~.OREM 3.1. Let F be nilpotent of rank at least two, and let p ~ R~ (F) be 
semi-simple. I f  some simple component of p has multiplicity two or more, then 
CTp(R~(1-)) is not a linear subspace of Tp(R~(F)). In particular, p is a singular 
point of R~(F). 

PROOF. The hypotheses imply that Endr(p) contains a subalgebra E iso- 
morphic to a n × n matrix algebra, n => 2. Inside E we can find elements AL, A2, 

Bi, B 2 such that [At, A2] -- [BI, B2] = 0 and the Lie subalgebra generated by 
Ai + Bi, A2 + B2 non-nilpotent. (If E is 2 × 2, we could take AI = e2~, 
A2 = Bt = 0, and B2 = el2. Then the algebra generated by A1 + B1, A 2 -~- B 2 is 
sl2(k).) Since rank(F)>_-2, d im(U(F)ab)>2.  Let L =Lie(U(F))  and let 
x, . . . . .  xn be a basis of L with xt . . . . .  Xd independent  modulo [L, L] and 
Xd+ t, • • •, Xn a basis of[L,  L]. Note that d > 2. Define 0, v f r o m / t o  tM~(k[[t]]) 
by k-linearity and 0(xl) = tA~, 0(X2) = IA2, O(xi) = 0 for i > 2, ~u(x~) = tBl, 
~u(x2) = tB2 and ~'(xi) = 0 for i > 2. Both 0 and ~'are Lie homomorphisms,  and 
in fact map L/[L, L] to tM,(k[[t]]) r, both of which are trivial F-modules, so 

and ~u are F-linear. Let (~, ~ denote their images under the map of (2.6). 
Suppose there were an f in Homr(L,  tM,(k[[t]])) whose image j? in 

Homr(L,  eM~(k)) satisfied f =  (~ + q/. Thenf(xi)  = t (a  i + Bi)  + higher degree 
for i = 1, 2 andf(xi)  = t- 0 + higher degree for i > 2. By (2.6), this implies that 
the Lie subalgebra of ~ 4 ( k )  generated by AI + B~ and A2 + B2 is a homomor-  
phic image ofgr(L), and hence nilpotent, contrary to the choice of  A~ and B~. It 
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follows that there is no such f, and that the image of (2.5) is not a linear 
subspace, and then (2.3) gives our result. 

It was shown in [4, 6.1, p. 93] that semi-simple representations of nilpotent 
groups that have no repeated components are non-singular points on the 
representation variety. This result can also be proved via the technique of 
curve tangents, using (2.4): for suppose p: F---GL~(k) is a semi-simple 
representation without repeated composition factors. Since F is nilpotent, 
U(F) has trivial F-action. It follows that 

(*) Homr(U(F), I + eM,(k)) = Homr(U(F) ab, I + e Endr(p)). 

Since Endr(p) is an abelian Lie algebra, reasoning as in (2.8) we have that (2.5) 
is surjective. It follows from (2.4) that p is non-singular on Rn(F). 

We can abstract this argument as follows: first, for any F and semi-simple p 
we have, by [4, 4.7, p. 73], that 

(**) Homr(U(F), I + tM~(k)) = H~(F, Ad op). 

Thus the condition needed to obtain (.) is that H~(F, (Ad op)/(Ad op)r) = 0. 
Since Ad op is semi-simple, for this latter it is suffcient that HI(F, M) = 0 for 
all simple F-modules other than k. This condition is used by Rudnick in [7, 
1.1, p. 263], where it is called property P. (Rudnick notes further that nilpotent 
groups have property P [7, 1.7, p. 264].) Property P groups have non-singular 
varieties of irreducible representations [7, 2.3, p. 267]; in light of the above 
discussion this is also a corollary of (2.4). 

PROPOSITION 3.2. Assume that HI(F, M ) =  0 for all non-trivial simple 
r-modules (property P). Let p : F---GL~(k) be a semi-simple representation 
without repeated composition factors. Then p is non-singular on ;~(F)  and 

= Tp( n(r)) = z ' ( F ,  a d  op). 

I f  in addition p is simple, then p is non-singular on S,(F) and 

= H ' (F ,  Ad op) = Hom(F, k). 

PROOF. We have already established all of (3.2) except for the final 
equality, which holds since k appears with multiplicity one in Ado p for p 
simple, while its complement has trivial cohomology by property P. 

As in [4, 6.2, p. 94] and [7, 2.3, p. 267], we can account for the tangents in 
Horn(F, k) from multiplication ofp by linear characters. 
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4. Abelian-by-finite groups 

This section concerns groups F with U(F) finite-dimensional abelian, es- 
pecially abelian-by-finite groups. For such groups, the results of Section 2 give 
us an explicit description of curve tangents and tangent cones. The spaces of 
simple representations of these groups were studied by Rudnick in [7]; this 
section relies heavily on that investigation. 

We begin by summarizing the relevant results from Section 2: 

PROPOSITION 4.1. Assume U(F) is finite-dimensional abelian and let p E 
Rn(F) be a semi-simple representation. Then 

CTp(Rn(l')) = TCAR,(r)) = Homr(Lie(U(F), ~4(k))  + B'(F, Ad °p). 

I f  p is simple then also 

CTtp~(S~(F)) = TCtp~(S~(F)) = Homr(Lie(U(l-)), ~4(k)). 

PROOF. Lie (U(F)) is graded nilpotent with support only in degree one. 
Then the equalities then follow from (2.9), and (2.8) and (2.3). 

Note that (4.1) determines the dimension of R,(I') at p. 
For the remainder of the section will fix notation: F is an extension of the 

finite quotient group G by the torsion free abelian normal subgroup N. 
It is easy to see that U(F) = U(N) = k ® N, with this equality as both F and 

G-modules. To avoid confusion between Lie homomorphisms from k ® N and 
module homomorphisms we always denote the set of the former by 
Lier(k @N, - ) or even Lier(N, - ). 

We note that if p E R,(1-') is a (semi-simple) representation and M the 
corresponding module then 

Homr(Lie(U(1-)), f~4(k))= Lieo(N, Ends(M)). 

PROPOSITION 4.2. Let p E Rn (F) be a semi-simple representation and let M 
be the corresponding module. Then: 

Lieo(N, Ends(M)) + BI(F, Ad op) 

c_ Tp(R.(F)) C_ Homo(N, Ends(M)) + Bt(F, Ad op). 

l f  p is simple, then also 

Lieo(N, Ends(M)) C_ Ttpz(Sn(F)) __ Homo(N, Ends(M)). 
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I f  p has no repeated N composition factors, then p is non-singular on R.(I") and 
reduced and non-singular on ~I,(F). I f  p is simple, [p] is non-singular on S,(I"). 

PROOF. The first assertions are the standard inclusions of(1.2a) taking the 
identities of (4.1) into account. If  p has no repeated N composition factors 
Ends(M) is an abelian Lie algebra so Lie and module homomorphisms  are 
equal and the inclusions (1.2a) become equalities. This establishes the non- 

singularity assertions. 

We are now going to focus on simple representations, where the Clifford 
theory [ 1, 11.1, p. 259] comes into play. Let p be a simple representation ofF.  
Then p is conjugate to a representation induced to F from a simple represen- 
tation a of a subgroup H containing N; tr(N) is scalar and H is determined up 
to conjugacy [1, 11.1, p. 259]. Thus a is a representation of  the central-by-finite 
group H/(H, N). Since central-by-finite groups are of  type P [7, 1.7, p. 264], the 

closed subvariety S,,(H/(H, N)) of S,,(H) is non-singular. If  m = n I F : H I -  1, 
the representations [tr] in SIn(H) which induce to simple representations o f F  is 
open; intersection with Sm(H/(H, N)) gives a non-singular variety and the 
induction images of all these varieties cover S,(F). To say that a variety is 
covered by images of morphisms with non-singular domains is not especially 
helpful. We need to know also the nature of  the maps on tangent spaces. The 
map in question is a composite, the first factor being the inclusion 
S,,(H/(H, N) )~S , , (H)  and the second being the induction S,,(H)---,S,(F). 
The first is tangentially easy: it comes from the cohomology map 
H~(H/(H,N), A d o p ) ~ H t ( H ,  Adop). The second is more complicated to 
explain infinitesimally. The following lemma, which also introduces Clifford 

theory notation, is necessary. 

LEMMA 4.3. Let p be a simple finite-dimensional representation ofF with 
module M. Assume M has N-homogeneous components V~ . . . .  , Vr, with 

V~ = L. Let 
A(p, N) = A = {y ~ F  I 7L is isomorphic to L } 

and let g~ . . . .  , gr be coset representatives of A in F with g~ = e. Then 

Ends(M) = kF  @k,~ Ends(L),  

PROOF. By Clifford theory, M = kF@ka L = L ~)g2L • • • • ~ g , L .  Thus 

Ends(M) = FI Ends(V,) = Fig i Ends(L).  
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This shows that the right-hand side of the assertion of(4.3) maps onto the left. 
Since both sides have the same dimension, they are equal. 

As a consequence of  (4.3), we have the following determination of  the effect 
of  Clifford induction on tangent spaces: 

PROPOSITION 4.4. Let p:F-- -GL, , (k)  be simple and assume that p is 

conjugate by Clifford induction to Indr ( a ) for A = A(p, N) and o': A --," GL,,(k) 
simple. Then we ha ve an induced bijection on tangent cones: 

TCto (Sm(A)) = C T H - -  C T t .  j = 

Moreover, [a] is scheme non-singular on SIn(A) i f  and only i f[p]  is scheme 
non-singular on S,,(F). 

PROOF. Let L and M be the modules associated to tr and p respectively. 
Then by (4. l) and the remark following, we have 

TCt,, J = CTIo I = Liea(N, Ends(L)) and TCtp j = CTtp I = Lier(N, Ends(M)). 

By (4.3), and the universal property of induction, we have 

Homr(N,  Ends(M)) = HomA(N, Ends(L)), 

the identity given by projection onto Ends(L) as a A-factor of Ends(M).  Since 
it is clear that this identity preserves Lie homomorphisms,  we obtain the first 
assertion of (4.4). By (4.2), scheme non-singularity is equivalent to all homo- 
morphisms being Lie homomorphisms,  and the above identity shows that this 
is the same assertion for both [tr] and [p]. 

Clifford theory is most helpful when A is a proper subgroup ofF,  i.e., when N 
is not represented centrally. 

Since we have calculated tangent cones in (4.1) and (4.4), we have calculated 
dimensions. We record this as follows: 

COROLLARY 4.5. Let [p]ES,(F) ,  /et A = A ( N , p )  and assume [p] is 

induced from [cr] in SIn(A). Then the dimension o f  S,(F) at p equals 
dim(Liea(N, Ends(a))). 

We apply this to some examples. 

EXAMPLE 4.6. Let F = N ~ $3 where the symmetric group $3 acts on 

N = ((x, y, z)~ZO~ I x + y + z = 0} 
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by permutation (see [4, p. 42]). Let p ER2(F) be the simple representation 
preceded by projection on $3 and let Vbe its module. As shown in [4, p. 43], 
End~(Y) = V~ ~) 1/2 ~) Vwhere V~ is the trivial and V2 the non-trivial character 
of $3. It follows that Homr(N, EndN(V)) is one-dimensional, and it is clear that 
any two-dimensional abelian subalgebra of Endk(V) must meet k I  = V~. So 
Lier(N, End~(V))= 0. Thus CTtp I = TCtpI(SE(F) ) = {0}. It follows that [p] is 
an isolated point of S2(F), with 

HI(F, Ad op) = Homr(N, Endk(V)) ~ 0. 

In fact, the same argument shows that every point in S2(l") is isolated. These 
results are obtained by calculations in [4, pp. 42-43]. 

EXAMPLE 4.7. Let F = N :~/)4, where D4 is the dihedral group of order 8 
and N = Z[D4] (integral group ring). Let p ~ R2(F) be the simple representation 
of D4 preceded by projection on/)4. From the character table of D4 [ 1, p. 220] it 
is clear that End~(V) (where V is the module of p) is the sum of the four linear 
characters of D4. Thus Lier(N, Endk(V)) is the union of the three planes 
Homr(k, k) + Homr(V,-, Vi) where Vi, i = I, 2, 3, ranges over the three non- 
trivial one dimensional Dc modules. Thus CTtp j = TCtp I (S2(F)) is the union of 
three planes. We can account for these as follows: there are three index two 
subgroups Hi, i = 1, 2, 3 of F containing N. Induction from Hi of one- 
dimensional modules yields a locally closed subset whose closure Ci is two- 
dimensional (since Homn, (N ,  k )  is two dimensional) and these three sets meet 
at [p], yielding the three planes in TCtp I as tangents. 
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